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mechanics [I]. In the considered problems the necessary and sufficient condition of 
stability is of the form 0Kn / 01 ~ 0, i.e. by virtue of(5.8) and (5.10) 

a q- ~ - -  9*lzl (5.12) 
G~ (--  i) > 4G+ (-- 2) 

As an illustration of the derived solution we present below the dependence of the di- 
mensionless critical height of the slope Knc / (6HV~l) on the dimensionless para- 
meters k / 6 H a n d  I / H  for a load-free slope for v = 0,3,  q0 = q, = 0, 60 - -  

~1 = O, ~ = i 2 0  °, ~ = 75 ° and p : 30 ° 

KIIc ~ l 
6 ~  ~--------~ = 0.46 - -  0 .26 - -  0 .034  H 

The obtained solution can be,evidently,  used also for the experimental determination 

of  parameter Kuc  , for instance, in experiments on uniaxial compression of specimens 
with an artificial boundary discontinuity along an inclined bonding plane (formula(5.9) 
for 1 h = 0 and a is equal to the right-hand part of equality (1. 9)) .  The properties of 
the bond along the slip line and its continuation must simulate the properties of the fil- 
ler in the tectonic crack and its interaction with the basic rock (quantifies k and p of 
the adhesive must in any case be equal to the related minimum values of k and p that 
are characteristic for the pairs fiUer-fillez and fil let-rock in the l imit  and the sliding 
states). The practical difficulties of simulating the structure of the "head" slip line are, 
evidently, not smaller than in the case of crack of normal cleavage.  
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Elastic-plastic l~oblems for a plane weakened by an infinite series of circular 
holes are considered. It is assumed that the stress level and the spacing between 
the holes are such that the circular holes are entirely enclosed by the appropriate 
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plastic zone but, at the same time, adjacent plastic domains do not merge. 
The elastic-plastic problem for a plane with one hole was formulated and 

solved in [1]. A number of papers [2 --  4] has been devotedto periodic elastic- 
plastic problems. Elastic-plastic problems for a plane weakened by a doubly- 
periodic system of circular holes have been examined in [5, 6]. 

In contrast to [2 --  4], in which the small parameter method was used, another 
method is applied to solve the periodic elastic-plastic problems, which generally 
permits obtaining the solution for any relative dimensions of the domain.  

Let there be a plane with circular holes having a radius R (R < ]) and centers at 
the points 

P m =  m o  (m=0,-4- t ,  ~ 2  . . . .  ), ~o-=2 

By Lm we denote the contour of a hole with center at the point Prn, by r m  the cor- 
responding elastic-plastic boundary, and by D z the exterior of the contours Fro. 

The boundary conditions on the contour of the hole Lm are 

~rr = - - p ,  ~ e =  0 (1) 

We assume that the stress field in the plastic zone is 

(rr = A / r  2 + B ( i  + 2 1 n r )  + 2 C  (2) 

( J 0 = - - A / r  2 ÷ B ( 3 - 2 1 n r ) - + - 2 C ,  x r s = 0  

where A,  B and C are certain constants. The axisymmetric stress field (2) satisfying 
the equilubrium equations is characterized by the fact that it permits compliance with 
certain plasticity conditions (see below) by an appropriate selection of the constants and 
by taking account of the plastic inhomogeneity, i .e .  the dependence of the yield point 
on the coordinate r and on the principal stresses o0 and err.At the same t ime, the me- 
thod used for such a stress field, which is a combination of the method of solving the pe- 
riodic elastic problem and the method proposed in [1] to solve elasticity and plasticity 
theory problems with an unknown boundary for a single hole, permits the effective solu- 
tion of the elastic-plastic problem. The stresses in the elastic domain are determined 
by the Kolosov-Muskhelishvili formulas [7] 

(rr q-  oo = 4 R e  (1) (z) (3) 

o0 - -  or + 2i'cro = 2 [~(I)' (z) -t- ~ (z)]e zts 

All tim stresses are continous on the unknown contour I'm separating the elastic and plas- 
tic domains. Using (2) and (8), we obtain boundary conditions on the contour I 'm 

Re  (:I) (z) = 1/2B In z~ q- B -k- C (4) 

~ '  (z) + ~ (z) = B ~ A 
Z ~.2 

Let us go over the parametric ~-plane by using the transformation z = ~o (~). The 
analytic function z = co (~) maps the domain Dz conformally onto the domain D~ in 
the ~-plane, which is the exterior of circles lmof radius ~ and centers at the points Pro. 

To determine the three analytic functions q) (~) = (li [o) (~)1, ~p (~) = W [0) (~)] 
and (o (~) we obtain the nonlinear boundary value problem on l m 

R eq~ (~ )  = B  + C + V 2 B I n 6 0 ( ~ )  (a(~)  (5) 
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~) (~) (p, ~ (~) A 
~ - )  ( ~ ) + , C ~ ) = B  ~(~) i~(~)]~ (6) 

Solving the Dirichlet problem (5), we find that in the domain Du 

(p (~) = B -}- C + B In (o (~) - -  B I n  --U 

Taking account of (7), the boundary condition (6) can be converted to 

(o' (~) ~ (~) ~p (~) = B ~ ~---)) ~2 (~) _ A~o' (~) 

(7) 

(8) 

We seek the required functions ~o (~), , (~) and co (~) 

~ 2~+~p(~) (~) 
(~) = ~o + ~ ~ + ~  (2~ + ~)I 

~+~ p(~) (~) 

k==O k~O 

~2~+~p(~-1) (~) 
(~) = ~ + Y, A~+.~ (ak + ~)~ 

K=O 
Here 

as the series 

L2k+2s(~+x) (~) 
(2k ~ i)[ 

8C~)=~ (~_p~), p~ P,~ 

(9) 

The prime on the summation sign means that the subscript m - -  0 is excluded in the 
summation. 

Let us present the dependences which the coefficients of the expressions (9) should sa- 
tisfy. We find from the conditions of symmetry relative to the coordinate axes that 

Imc¢~+ 2 = I m ~ + ~ - - - -  I m A ~ + 2  = 0 ,  k = O , i ,  2 . . . .  (10) 

It is easy to see that the relationship (9),(10) define a class of symmetric problems with 
a periodic stress distribution. 

From the condition that the principal vector of the forces acting on an arc connecting 
two congruent points m D~ is zero there follows that 

s0 = 1/2, n ~  

By virtue of the periodicity conditions, the system of boundary conditions (8) on lm (m 
0, ~ t ,  ~ 2, . . .) is replaced by one functional equation on the contour l o ,say. 

To form the equations in the remaining coefficients of the expres~ons (9) for the func- 
tions q) (~), ~ (~) and co (~) , let us expand these functions in Laumnt series in the 
neighborhood of the point ~ ~ 0 ~o oo oo 

~ + ~  
(P (~) = ~o + >', ~+~ ~ + ~, o~+~ ;~,~+~ ~ ,.j. ~ (11) 

k==o ~ k = o  j = o  
o o  c o  o o  

k = o  k = o  j==o 
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o o  
o o  / 

~,  (2k + 2) a~+2 )~2~+2 ~, (2] + 2k £- 2) rj, ~2j 
k~0 j~0 

~=0 J=o 2/" -4- t 

Here (2/" --}- 2k -4- t)I gj+k+l ¢~ I 

rj. ~ = [(2/')! (2k + 1)I 2 2~+~+2 ' gi+/~+l ---- 2 ~ ,  m~J+2~+2 
~ t t ~ l  

Substituting their expansions (ii) in place of ~0 (~), ~ (~) and ~o (~) in the boundary 
conditions (5) and (8) on the contour l 0 (~ = ~ei0) and comparing coefficients of 

eSi~o(k = 0, ~ I, ~___ 2, . . . ), we obtain an infinite system of nonlinear algebraic 
equations in ¢C2k , ~2~, As~ (condition (5) was preliminarily differentiated with respect 
to 0). The first approximation equations are presented below 

Aa 
X D  q- Y D 2  ~ ZD~ = B (Da - -  A~D1 q- a~D~) ~ 

X D x  -4- Y D  ---- B (Da~ q- aD1) AA2 
9,2 

XD~  q- Z D  = B (D2a ~ A~D)  - -  AA~,2rx,o 

2a2 (I + ~4rl,0) d = B d  1 

X = a~2 -~- As~4~)rl, 0 -~- A2y0, 

Z = ayo + A2y  I -~- A2[~2~4r1,o, 

D = a 2 - -  2/3 A22~4ro, x, 

D 2 = 2/3 A2a)~4ro,1, 

d ---- a 2 ~- A2 2 (t -{- 1/9)~srl, o2), 

Y = + A2fi  

a = t -~- A2~2r0,0 

D 1 = - -  2aA~ 

al = I/3 A2~.4rl,o 

dl = - -  2aA2 (t  - -  t / 3 ~ r l , 0 )  
?j = fi2rs, o)~ 2s+2 + ~4rj, z 2s+4 - -  2 (2] + 2)a2)~2S+2rs, o ( / = 0 . t ) .  

To  obtain the relatiomhil~ relating the parameter )~ to the applied load p ,  we sub- 
stitute the first and third formulas in (9) into the boundary condition (5), then we multi-  
ply the e x p r e ~ o n  obtained by t / 2~ r i~  and integrate over the circular contoar lo. We 
consequently obtain [7] 

k=0 k~=0 

The boundary conditions (1) on the contour of the hole Lm and the flow conditions 
define the quantities A, B and C. 

Let us consider some particular cases, 
Tresca-Saint Venant or Huber-Mises plasticity condition. Let 

the relationship [ ¢Y0 -- Gr [ = 2k be satisfied in the plastic zone (k is the plasticity 
comtant). In this case we have according to(l) and (2) 

A = 0 ,  B = ek, 2 C = - - p - - e k ( t  + 2 1 n R )  

Here e = -4- i is selected from physical considerations. The results of a computation 
in the first two approximations ate given in Table 1. In Fig. 1 the solid lines am depen- 
dences of the parameter ~ on the magnitude of the applied load p / k for values 
R = 0 . 5 ,  0 . 4 , 0 . 3 ,  0 .2 ,  0 . i  of the hole radius(curves 1 - - 5 ) .  
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I n h o m o g e n e o u s l y -  p l a s t i c  m a t e r i  a l .  Now, let the plasticity condition be 
[8] 

ge - -  zr --- 2 [k0 -~- kl ( 4 ) '  ] 

Here ko.and k 1 am material constants. This plasticity condition can be considered as 
the ordinary Tresca--Saint-Venant condition with a yield point dependent on the radius. 
In this case we have according to (1) and (2) 

A = - - k l R  ~, B = k0, 2C = k z - k  0 - p - 2 k 0 1 n R  I 

The results ofacomputation in the second approximation are given in Table 2 for values 
of the inhomogeneity parameter kzR ~ / k 0 =- 0,09. 

Dependences of the parameter ~ on the quantity p / k 0 for R = 0.3 am represented 
by curves 6, 7 in Fig. 1 for values of the inhomogeneity parameter k z / k  o equal to 1 
and - -0 .5 ,  respectively. 

E x p o n e n t i a l  f l o w  c o n d i t i o n .  Let the plasticity condition be 

~, - -  ~0 = 2k i - -  exp - -  T + 2k ] J 

Here k >o  0 and o 0 > 0 are material constants with the dimensionality of a stress. 
This flow condition describes the limit state of some rock [9]. In this case, we have 

according to (1) and (2) 

A ------ke-2t-sR ~, B---- - -k ,  C =  z/2(~ o - k l n t R  -x 

where t is a constant which is the root of the equation 

k -1 (o0 + p)  - -  I = e-Zt - z  + 2 In t (t > e-Z) 

M o r e  g e n e r a l  f l o w  c o n d i t i o n s .  Let the following flow conditiom hold in 
the plastic zone [10]: 

(5 r - -  60 : 2 k + r2 r v - -  - - ~  "~-" 2Y+l--------~ (T == 0 ,  1) 

According to (1) and (2) in this case. the constants A, B and C have the values 

A = b- -ke~-~t -2R2,  B = - - k ,  C =  2 ~ - l [ ( ~ o + k l n ( R s t - . ) ]  

Here t is a constant which is the root of the equation 

( k-X ~o "}- P + --~ - -  l = e-"t -2 -4- 21n t (t>e-~) for " r = 0  

k - X ( 2 Z o + p + - - ~ - ) - - t +  2 1 n R : 4 1 n t  + e - i t  - '  ( t > e  -1) for T=$ 

Setting ~ = ~ei0, in the last relationship in (11), we obtain the equation of the elastic- 
plastic boundary r = [ co 0~¢ t°) I = / (0). In a first approximation r ~ = ~* (d -~ 
d z cos 20), where 

r m a x = X [ l + A , ( - - l + ~ '  ~. r i '°  ~.,1)] ¢12) 
~0  2/ '+1 

rmln= ~[ i - ' } -A ,  ( t -~ -~ ;  ~.(-- i) ir i- '°~'J)]  (13) 

The ela.CAc-plastic boundary (orm-fourth of the contour) is represented in Fig. 2 for the 
Tmsca--Saint-Venant flow condition for the case R ~-- 0 .3 ,  P ---- 2 . i2  k (~ = 0.7, 
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Firat approximation 
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--0.08592 --0.13708 
0.08502 O. t 3037 

Second approximation 
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- -0 .0179t  

0.08469 
--0.13470 
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1.3t0t6  
O. 08694 
0.08332 
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--0.00635 

0,t6259 
--0.0t059 
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rmax = 0 ,8 t ,  rmln -=- 0.58). 
The least load for which the hole contour is encle6od entirely by the plastic zone is 

determined from the condition rm| n ~ R .  For rmax ~ t the relationdfip(13) Permits 
finding the largest load for which the plastic zones touch one another. 

Up to now the mean stresses in the plane have been taken equal to zero. Let the mean 

stresses (tension or compression at infinity) 

Gx : ~x =, 6~ = %00, ~ 1 : 0  

hold in the plane. In this case the complex potentials axe sought in the form 

~, (~) = ~ + ~ ~ -  ~2 
4 + ~ C~), , ,  C~) = 2 + ~ C~) 

where q~ C~) and ~ (~) are determined by the first two relationships (9). 
The author is grateful to G. P. Cherepanov for attention to the research. 
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